Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

نویسندگان

  • Giovanni P. Terrasi
  • Urs Meier
  • Christian Affolter
چکیده

This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP) tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati). The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm). All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, OPEN ACCESS Polymers 2014, 6 2066 which led to local crushing of the high-performance spun concrete (HPSC). Besides this, long-term monitoring of the creep tests has shown a limited timeand temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable anchorage of these novel CFRP prestressing tendons in thin-walled, precast concrete members under realistic long-term service loads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultimate Tendon Stress in CFRP Strengthened Unbounded HSC Post-Tensioned Continuous I-Beams

The use of unbounded tendons is common in prestressed concrete structures and evaluation of the stress increase in unbonded tendons at ultimate flexural strength of such structure has posed a great challenge over the years. Based on the bending experiment for two-span continuous post-tension beams with unbounded tendons and externally applied CFRP sheets, the monitoring of the stress increment ...

متن کامل

Ultimate Unbonded Tendon Stress in CFRP Strengthened Post-Tensioned Indeterminate I-Beams Cast with HSCs

Based on the bending experiment for two-span continuous post-tension beams with unbounded tendons and externally applied CFRP sheets, the analysis of the stress increment of unbonded tendons is monitored in the loading process. Since self-compacting concrete (SCC) is a suitable innovation,, understanding the implementation of this type of concrete on the ultimate unbonded tendon stress is criti...

متن کامل

Short-Term Creep Behavior of CFRP-Reinforced Wood Composites Subjected to Cyclic Loading at Different Climate Conditions

Carbon fiber reinforced plastic (CFRP) was used to adhesively reinforce Chinese fir (Cunninghamia lanceolata) wood specimens. This study examined the flexural static and creep performances of CFPR-reinforced wood composites that had been subjected to changes in moisture and stress levels. The major findings were as follows: 1) the cyclic creep was slightly lower for those specimens subjected to...

متن کامل

Predicting the Long Term Life of Polymer Composites Using Time Temperature Shift Factor (TTSF)

The use of Carbon Fiber–Reinforced Polymers (CFRP) has increased in number of industries i.e. aerospace, automobiles, marine, medical and sports due to their light weight and high strength-stiffness. However, their properties are greatly affected under extreme e environmental conditions i.e. high temperatures and moisture uptake. The paper reports an experimental study to determine the response...

متن کامل

The Effect of Normal Anisotropy on Thin-Walled Tube Bending

Thin-walled tube bending has common applications in the automobile and aerospace industries. The rotary-draw-bending method is a complex physical process with multi-factor interactive effects and is one of the advanced tube forming processes with high efficiency, high forming precision, low consumption and good flexibility for bending angle changes. However, it may cause a wrinkling phenomenon,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014